168 research outputs found

    Location-Aided Fast Distributed Consensus in Wireless Networks

    Full text link
    Existing works on distributed consensus explore linear iterations based on reversible Markov chains, which contribute to the slow convergence of the algorithms. It has been observed that by overcoming the diffusive behavior of reversible chains, certain nonreversible chains lifted from reversible ones mix substantially faster than the original chains. In this paper, we investigate the idea of accelerating distributed consensus via lifting Markov chains, and propose a class of Location-Aided Distributed Averaging (LADA) algorithms for wireless networks, where nodes' coarse location information is used to construct nonreversible chains that facilitate distributed computing and cooperative processing. First, two general pseudo-algorithms are presented to illustrate the notion of distributed averaging through chain-lifting. These pseudo-algorithms are then respectively instantiated through one LADA algorithm on grid networks, and one on general wireless networks. For a k×kk\times k grid network, the proposed LADA algorithm achieves an ϵ\epsilon-averaging time of O(klog(ϵ1))O(k\log(\epsilon^{-1})). Based on this algorithm, in a wireless network with transmission range rr, an ϵ\epsilon-averaging time of O(r1log(ϵ1))O(r^{-1}\log(\epsilon^{-1})) can be attained through a centralized algorithm. Subsequently, we present a fully-distributed LADA algorithm for wireless networks, which utilizes only the direction information of neighbors to construct nonreversible chains. It is shown that this distributed LADA algorithm achieves the same scaling law in averaging time as the centralized scheme. Finally, we propose a cluster-based LADA (C-LADA) algorithm, which, requiring no central coordination, provides the additional benefit of reduced message complexity compared with the distributed LADA algorithm.Comment: 44 pages, 14 figures. Submitted to IEEE Transactions on Information Theor

    Decentralized Differentially Private Without-Replacement Stochastic Gradient Descent

    Full text link
    While machine learning has achieved remarkable results in a wide variety of domains, the training of models often requires large datasets that may need to be collected from different individuals. As sensitive information may be contained in the individual's dataset, sharing training data may lead to severe privacy concerns. Therefore, there is a compelling need to develop privacy-aware machine learning methods, for which one effective approach is to leverage the generic framework of differential privacy. Considering that stochastic gradient descent (SGD) is one of the mostly adopted methods for large-scale machine learning problems, two decentralized differentially private SGD algorithms are proposed in this work. Particularly, we focus on SGD without replacement due to its favorable structure for practical implementation. In addition, both privacy and convergence analysis are provided for the proposed algorithms. Finally, extensive experiments are performed to verify the theoretical results and demonstrate the effectiveness of the proposed algorithms
    corecore